NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive ds084.1 | DOI: 10.5065/D65D8PWK | |
For help with this dataset, send us a message. |
Help with this page: | RDA dataset description page video tour | ||||||||||||||||||||||||||||||||||||||||
Data Citations: | This dataset has been cited 57 times. Published works that cited this dataset Published works that cited this dataset: 2022
ARDIANTO, R., A. ISMANTO, J. SAMPURNO, and S. WIDADA, 2022: TIDAL FLOOD MODEL PROJECTION USING LAND SUBSIDENCE PARAMETER IN PONTIANAK, INDONESIA. Geographia Technica, 17, 135-147, https://doi.org/10.21163/GT_2022.172.12
Alerskans, E., J. Nyborg, M. Birk, and E. Kaas, 2022: A transformer neural network for predicting near-surface temperature. Meteor. Applications, 29, https://doi.org/10.1002/met.2098
Buzin, I., S. Klyachkin, S. Frolov, K. Smirnov, S. Mikhaltceva, Y. Sokolova, Y. Gudoshnikov, G. Voinov, M. Grigoryev, and , 2022: COMPRESSION OF THE ICE COVER IN THE PECHORA SEA: A NATURAL PHENOMENON AND ITS IMPACT ON MARINE OPERATIONS. Arktika: Ekologia i Ekonomika, 12, 500-512, https://doi.org/10.25283/2223-4594-2022-4-500-512
Fujiwara, K., and R. Kawamura, 2022: Intensification of a distant hurricane by warm‐core eddies in the Gulf Stream in boreal fall. Atmospheric Science Letters, https://doi.org/10.1002/asl.1141
Gebremichael, M., H. Yue, V. Nourani, and R. Damoah, 2022: The Skills of Medium-Range Precipitation Forecasts in the Senegal River Basin. Sustainability, 14, 3349, https://doi.org/10.3390/su14063349
Gebremichael, M., H. Yue, and V. Nourani, 2022: The Accuracy of Precipitation Forecasts at Timescales of 1–15 Days in the Volta River Basin. Remote Sensing, 14, 937, https://doi.org/10.3390/rs14040937
Köcher, G., T. Zinner, C. Knote, E. Tetoni, F. Ewald, and M. Hagen, 2022: Evaluation of convective cloud microphysics in numerical weather prediction models with dual-wavelength polarimetric radar observations: methods and examples. Atmos. Meas. Tech., 15, 1033-1054, https://doi.org/10.5194/amt-15-1033-2022
Lachatre, M., S. Mailler, L. Menut, A. Cholakian, P. Sellitto, G. Siour, H. Guermazi, G. Salerno, and S. Giammanco, 2022: Modelling SO2 conversion into sulfates in the mid-troposphere with a 3D chemistry transport model: the case of Mount Etna's eruption on 12 April 2012. Atmos. Chem. Phys., 22, 13861-13879, https://doi.org/10.5194/acp-22-13861-2022
Liu, Z., C. Snyder, J. J. Guerrette, B. Jung, J. Ban, S. Vahl, Y. Wu, Y. Trémolet, T. Auligné, B. Ménétrier, A. Shlyaeva, S. Herbener, E. Liu, D. Holdaway, and B. T. Johnson, 2022: Data assimilation for the Model for Prediction Across Scales – Atmosphere with the Joint Effort for Data assimilation Integration (JEDI-MPAS 1.0.0): EnVar implementation and evaluation. Geosci. Model Dev., 15, 7859-7878, https://doi.org/10.5194/gmd-15-7859-2022
Maynard, I., and A. Abdulla, 2022: Assessing benefits and costs of expanded green hydrogen production to facilitate fossil fuel exit in a net-zero transition. Renewable Energy Focus, https://doi.org/10.1016/j.ref.2022.12.002
Parker, D. J., A. M. Blyth, S. J. Woolnough, A. J. Dougill, C. L. Bain, E. de Coning, M. Diop-Kane, A. Kamga Foamouhoue, B. Lamptey, O. Ndiaye, P. Ruti, E. A. Adefisan, L. K. Amekudzi, P. Antwi-Agyei, C. E. Birch, C. Cafaro, H. Carr, B. Chanzu, S. J. Clarke, H. Coskeran, S. K. Danuor, F. M. de Andrade, K. Diakaria, C. Dione, C. A. Diop, J. K. Fletcher, A. T. Gaye, J. L. Groves, M. Gudoshava, A. J. Hartley, L. C. Hirons, I. Ibrahim, T. D. James, K. A. Lawal, J. H. Marsham, J. N. Mutemi, E. C. Okogbue, E. Olaniyan, J. B. Omotosho, J. Portuphy, A. J. Roberts, J. Schwendike, Z. T. Segele, T. M. Stein, A. L. Taylor, C. M. Taylor, T. A. Warnaars, S. Webster, B. J. Woodhams, and L. Youds, 2022: The African SWIFT Project: Growing Science Capability to Bring about a Revolution in Weather Prediction. , 103, E349-E369, https://doi.org/10.1175/BAMS-D-20-0047.1
Prince, K. C., and C. Evans, 2022: Convectively Generated Negative Potential Vorticity Enhancing the Jet Stream through an Inverse Energy Cascade during the Extratropical Transition of Hurricane Irma. , 79, 2901-2918, https://doi.org/10.1175/jas-d-22-0094.1
San Jose, R., and J. L. Perez-Camanyo, 2022: High-resolution impacts of green areas on air quality in Madrid. Air Qual Atmos Health, https://doi.org/10.1007/s11869-022-01263-3
Shirai, T., Y. Enomoto, M. Watanabe, and T. Arikawa, 2022: Sensitivity analysis of the physics options in the Weather Research and Forecasting model for typhoon forecasting in Japan and its impacts on storm surge simulations. Coastal Engineering Journal, 1-27, https://doi.org/10.1080/21664250.2022.2124040
Sun, D., W. Huang, Y. Luo, J. Luo, J. S. Wright, H. Fu, and B. Wang, 2022: A Deep Learning‐Based Bias Correction Method for Predicting Ocean Surface Waves in the Northwest Pacific Ocean. Geophysical Research Letters, 49, https://doi.org/10.1029/2022gl100916
Tositti, L., E. Brattich, C. Cassardo, P. Morozzi, A. Bracci, A. Marinoni, S. Di Sabatino, F. Porcù, and A. Zappi, 2022: Development and evolution of an anomalous Asian dust event across Europe in March 2020. Atmos. Chem. Phys., 22, 4047-4073, https://doi.org/10.5194/acp-22-4047-2022
Villalba-Pradas, A., and F. J. Tapiador, 2022: Empirical values and assumptions in the convection schemes of numerical models. Geosci. Model Dev., 15, 3447-3518, https://doi.org/10.5194/gmd-15-3447-2022
West, T. K., and W. J. Steenburgh, 2022: Formation, Thermodynamic Structure, and Airflow of a Japan Sea Polar Airmass Convergence Zone. Mon. Wea. Rev., 150, 157-174, https://doi.org/10.1175/MWR-D-21-0095.1
Weston, M. J., S. J. Piketh, F. Burnet, S. Broccardo, C. Denjean, T. Bourrianne, and P. Formenti, 2022: Sensitivity analysis of an aerosol-aware microphysics scheme in Weather Research and Forecasting (WRF) during case studies of fog in Namibia. Atmos. Chem. Phys., 22, 10221-10245, https://doi.org/10.5194/acp-22-10221-2022
Wise, A. S., J. T. Neher, R. S. Arthur, J. D. Mirocha, J. K. Lundquist, and F. K. Chow, 2022: Meso- to microscale modeling of atmospheric stability effects on wind turbine wake behavior in complex terrain. Wind Energy Sci., 7, 367-386, https://doi.org/10.5194/wes-7-367-2022
Wu, L., D. D. Morabito, J. P. Teixeira, L. Huang, H. M. Nguyen, H. Su, M. A. Soriano, L. Pan, D. S. Kahan, and R. Bhawar, 2022: Prediction of Atmospheric Noise Temperature at the Deep Space Network With Machine Learning. Radio Sci., 57, https://doi.org/10.1029/2022RS007483
Yang, L., W. Duan, Z. Wang, and W. Yang, 2022: Toward targeted observations of the meteorological initial state for improving the PM2.5 forecast of a heavy haze event that occurred in the Beijing–Tianjin–Hebei region. Atmos. Chem. Phys., 22, 11429-11453, https://doi.org/10.5194/acp-22-11429-2022
Yue, H., M. Gebremichael, and V. Nourani, 2022: Performance of the Global Forecast System's medium-range precipitation forecasts in the Niger river basin using multiple satellite-based products. Hydrol. Earth Syst. Sci., 26, 167-181, https://doi.org/10.5194/hess-26-167-2022
Zacharias, D. C., and A. Fornaro, 2022: Spill, Transport and Fate Model (STFM): Development and Validation. Revista Ambiente e Agua, 17, https://doi.org/10.4136/ambi-agua.2789
2021
Alerskans, E., and E. Kaas, 2021: Local temperature forecasts based on statistical post-processing of numerical weather prediction data. Meteor. Applications, 28, https://doi.org/10.1002/met.2006
Alessi, M. J., and A. T. DeGaetano, 2021: A comparison of statistical and dynamical downscaling methods for short-term weather forecasts in the US Northeast. Meteor. Applications, 28, https://doi.org/10.1002/met.1976
Anande, D. M., and M. Park, 2021: Impacts of projected urban expansion on rainfall and temperature during rainy season in the middle-eastern region in tanzania. Atmosphere, 12, https://doi.org/10.3390/atmos12101234
Fujiwara, K., and R. Kawamura, 2021: Active Role of Sea Surface Temperature Changes Over the Kuroshio in the Development of Distant Tropical Cyclones in Boreal Fall. JGR Atmospheres, 126, https://doi.org/10.1029/2021jd035056
Gonzalez, J. P., F. C. Zambrano, J. R. Valencia, and A. G. Betancourt, 2021: Numerical model for atmospheric temperature prediction in the Pamplonita River Basin, Norte de Santander, Colombia. Periodicals Eng. Nat. Sci., 9, 428-438, https://doi.org/10.21533/pen.v9i3.1510
Hewage, P., M. Trovati, E. Pereira, and A. Behera, 2021: Deep learning-based effective fine-grained weather forecasting model. Pattern Anal. Applications, 24, 343-366, https://doi.org/10.1007/s10044-020-00898-1
Kilicarslan, B. M., I. Yucel, H. Pilatin, E. Duzenli, and M. T. Yilmaz, 2021: Improving WRF‐Hydro runoff simulations of heavy floods through the sea surface temperature fields with higher spatio‐temporal resolution. Hydrological Processes, 35, https://doi.org/10.1002/hyp.14338
Kirthiga, S. M., B. Narasimhan, and C. Balaji, 2021: A multi-physics ensemble approach for short-term precipitation forecasts at convective permitting scales based on sensitivity experiments over southern parts of peninsular India. J. Earth Sys. Sci., 130, https://doi.org/10.1007/s12040-021-01556-8
Lam, M., and J. C. Fung, 2021: Model sensitivity evaluation for 3dvar data assimilation applied on wrf with a nested domain configuration. Atmosphere, 12, https://doi.org/10.3390/atmos12060682
Myslenkov, S., A. Zelenko, Y. Resnyanskii, V. Arkhipkin, and K. Silvestrova, 2021: Quality of the Wind Wave Forecast in the Black Sea Including Storm Wave Analysis. Sustainability, 13, 13099, https://doi.org/10.3390/su132313099
Narasimha Rao, N., S. Paul, M. S. Skekhar, G. P. Singh, A. K. Mitra, and S. C. Bhan, 2021: Unprecedented heavy rainfall event over Yamunanagar, India during 14 July 2016: An observational and modelling study. Meteorological Applications, 28, https://doi.org/10.1002/met.2039
Phillipson, L., Y. Li, and R. Toumi, 2021: Strongly coupled assimilation of a hypothetical ocean current observing network within a regional ocean-atmosphere coupled model: An OSSE case study of typhoon hato. Mon. Wea. Rev., 149, 1317-1336, https://doi.org/10.1175/MWR-D-20-0108.1
Prata, A. T., L. Mingari, A. Folch, G. Macedonio, and A. Costa, 2021: FALL3D-8.0: A computational model for atmospheric transport and deposition of particles, aerosols and radionuclides - Part 2: Model validation. Geosci. Model Dev., 14, 409-436, https://doi.org/10.5194/gmd-14-409-2021
Rabbani, K. G., S. Das, S. K. Panda, A. Kabir, and M. K. Mallik, 2021: Physical and Dynamical Characteristics of Thunderstorms Over Bangladesh Based on Radar, Satellite, Upper-Air Observations, and WRF Model Simulations. Pure Appl. Geophysics, 178, 3747-3767, https://doi.org/10.1007/s00024-021-02847-3
Williamson, C. J., A. Kupc, A. Rollins, J. Kazil, K. D. Froyd, E. A. Ray, D. M. Murphy, G. P. Schill, J. Peischl, C. Thompson, I. Bourgeois, T. B. Ryerson, G. S. Diskin, J. P. DiGangi, D. R. Blake, T. V. Bui, M. Dollner, B. Weinzierl, and C. A. Brock, 2021: Large hemispheric difference in nucleation mode aerosol concentrations in the lowermost stratosphere at mid-and high latitudes. Atmos. Chem. Phys., 21, 9065-9088, https://doi.org/10.5194/acp-21-9065-2021
2020
Brands, S., G. Fernández-García, M. García Vivanco, M. Tesouro Montecelo, N. Gallego Fernández, A. D. Saunders Estévez, P. E. Carracedo García, A. Neto Venâncio, P. Melo Da Costa, P. Costa Tomé, C. Otero, M. L. Macho, and J. Taboada, 2020: An exploratory performance assessment of the CHIMERE model (version 2017r4) for the northwestern Iberian Peninsula and the summer season. Geosci. Model Dev., 13, 3947-3973, https://doi.org/10.5194/gmd-13-3947-2020
Hewage, P., A. Behera, M. Trovati, E. Pereira, M. Ghahremani, F. Palmieri, and Y. Liu, 2020: Temporal convolutional neural (TCN) network for an effective weather forecasting using time-series data from the local weather station. Soft Computing, 24, 16453-16482, https://doi.org/10.1007/s00500-020-04954-0
Jyoteeshkumar, P., P. V. Kiran, and C. Balaji, 2020: Chennai extreme rainfall event of 2015 under future climate projections using the pseudo global warming dynamic downscaling method. Current Sci., 118, 1968-1979, https://doi.org/10.18520/cs/v118/i12/1968-1979
Kupc, A., C. J. Williamson, A. L. Hodshire, J. Kazil, E. Ray, T. P. Bui, M. Dollner, K. D. Froyd, K. McKain, A. Rollins, G. P. Schill, A. Thames, B. B. Weinzierl, J. R. Pierce, and C. A. Brock, 2020: The potential role of organics in new particle formation and initial growth in the remote tropical upper troposphere. Atmos. Chem. Phys., 20, 15037-15060, https://doi.org/10.5194/acp-20-15037-2020
Lachatre, M., S. Mailler, L. Menut, S. Turquety, P. Sellitto, H. Guermazi, G. Salerno, T. Caltabiano, and E. Carboni, 2020: New strategies for vertical transport in chemistry transport models: application to the case of the Mount Etna eruption on 18 March 2012 with CHIMERE v2017r4. Geosci. Model Dev., 13, 5707-5723, https://doi.org/10.5194/gmd-13-5707-2020
Lin, J., K. Emanuel, and J. L. Vigh, 2020: Forecasts of hurricanes using large-ensemble outputs. Wea. Forecasting, 35, 1713-1731, https://doi.org/10.1175/WAF-D-19-0255.1
Lindner, M., J. Rosenow, and H. Fricke, 2020: Aircraft trajectory optimization with dynamic input variables. CEAS Aeronautical J., 11, 321-331, https://doi.org/10.1007/s13272-019-00430-0
Mendez Turrubiates, R. F., M. Gross, and V. Magar, 2020: Local quantitative precipitation forecast with minimal data requirement—an ensemble approach. Wea. Forecasting, 35, 821-839, https://doi.org/10.1175/WAF-D-19-0077.1
Ruppert, J. H., A. A. Wing, X. Tang, and E. L. Duran, 2020: The critical role of cloud–infrared radiation feedback in tropical cyclone development. Proc Natl Acad Sci USA, 117, 27884-27892, https://doi.org/10.1073/pnas.2013584117
Valmassoi, A., J. Dudhia, S. Di Sabatino, and F. Pilla, 2020: Evaluation of three new surface irrigation parameterizations in the WRF-ARW v3.8.1 model: The Po Valley (Italy) case study. Geosci. Model Dev., 13, 3179-3201, https://doi.org/10.5194/gmd-13-3179-2020
2019
Herman, A., K. Wojtysiak, and M. Moskalik, 2019: Wind wave variability in Hornsund fjord, west Spitsbergen. Estuar. Coast. Shelf Sci., 217, 96-109, https://doi.org/10.1016/j.ecss.2018.11.001
Pilguj, N., M. Taszarek, �. Pajurek, and M. Kryza, 2019: High-resolution simulation of an isolated tornadic supercell in Poland on 20 June 2016. Atmos. Res., 218, 145-159, https://doi.org/10.1016/j.atmosres.2018.11.017
Taszarek, M., N. Pilguj, J. Orlikowski, A. Surowiecki, S. Walczakiewicz, W. Pilorz, K. Piasecki, L. Pajurek, and M. Półrolniczak, 2019: Derecho evolving from a Mesocyclone-A Study of 11 August 2017 severe weather outbreak in Poland: Event analysis and high-resolution simulation. Mon. Wea. Rev., 147, 2283-2306, https://doi.org/10.1175/MWR-D-18-0330.1
Uzun, M., M. U. Demirezen, E. Koyuncu, G. Inalhan, J. Lopez, and M. Vilaplana, 2019: Deep Learning Techniques for Improving Estimations of Key Parameters for Efficient Flight Planning. AIAA/IEEE Digital Avionics Systems Conference - Proceedings, Institute of Electrical and Electronics Engineers Inc., https://doi.org/10.1109/DASC43569.2019.9081804
Williamson, C. J., A. Kupc, D. Axisa, K. R. Bilsback, T. Bui, P. Campuzano-Jost, M. Dollner, K. D. Froyd, A. L. Hodshire, J. L. Jimenez, J. K. Kodros, G. Luo, D. M. Murphy, B. A. Nault, E. A. Ray, B. Weinzierl, J. C. Wilson, F. Yu, P. Yu, J. R. Pierce, and C. A. Brock, 2019: A large source of cloud condensation nuclei from new particle formation in the tropics. Nature, 574, 399-403, https://doi.org/10.1038/s41586-019-1638-9
Xylogiannopoulos, K., P. Karampelas, and R. Alhajj, 2019: Multivariate motif detection in local weather big data. Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2019, Association for Computing Machinery, Inc, 749-756, https://doi.org/10.1145/3341161.3343518
Zhang, S., and Z. Pu, 2019: Numerical simulation of rapid weakening of Hurricane Joaquin with assimilation of high-definition sounding system dropsondes during the tropical cyclone intensity experiment: Comparison of three- and four-dimensional ensemble-variational data assimilation. Wea. Forecasting, 34, 521-538, https://doi.org/10.1175/WAF-D-18-0151.1
2018
Mccorkle, T. A., J. D. Horel, A. A. Jacques, and T. Alcott, 2018: Evaluating the experimental High-Resolution Rapid Refresh-Alaska modeling system using US array pressure observations. Wea. Forecasting, 33, 933-953, https://doi.org/10.1175/WAF-D-17-0155.1
|
||||||||||||||||||||||||||||||||||||||||
Abstract: |
The NCEP operational Global Forecast System analysis and forecast grids are on a 0.25 by 0.25 global latitude longitude grid. Grids include analysis and forecast time steps at a 3 hourly interval from 0 to 240, and a 12 hourly interval from 240 to 384. Model forecast runs occur at 00, 06, 12, and 18 UTC daily. For real-time data access please use the NCEP data server. |
||||||||||||||||||||||||||||||||||||||||
Temporal Range: |
2015-01-15 00:00 +0000 to 2023-01-16 18:00 +0000 (Entire dataset)
Period details by dataset productPeriod details by dataset product: 2015-01-15 00:00 +0000 to 2016-01-16 18:00 +0000 (NCEP GFS 0.25 Degree Analysis and Forecast Grids for 2015)
2016-01-01 00:00 +0000 to 2017-01-16 18:00 +0000 (NCEP GFS 0.25 Degree Analysis and Forecast Grids for 2016)
2017-01-01 00:00 +0000 to 2018-01-16 18:00 +0000 (NCEP GFS 0.25 Degree Analysis and Forecast Grids for 2017)
2018-01-01 00:00 +0000 to 2023-01-16 18:00 +0000 (NCEP GFS 0.25 Degree Analysis and Forecast Grids for 2018)
2019-01-01 00:00 +0000 to 2020-01-16 18:00 +0000 (NCEP GFS 0.25 Degree Analysis and Forecast Grids for 2019)
2020-01-01 00:00 +0000 to 2021-01-16 18:00 +0000 (NCEP GFS 0.25 Degree Analysis and Forecast Grids for 2020)
|
||||||||||||||||||||||||||||||||||||||||
Updates: | Daily | ||||||||||||||||||||||||||||||||||||||||
Variables: |
Variables by dataset productVariables by dataset product:
Variable list for NCEP GFS 0.25 Degree Analysis and Forecast GridsVariable list for NCEP GFS 0.25 Degree Analysis and Forecast Grids: 5-wave geopotential height Absolute vorticity Albedo Apparent temperature Best (4 layer) lifted index Categorical freezing rain (yes=1; no=0) Categorical ice pellets (yes=1; no=0) Categorical rain (yes=1; no=0) Categorical snow (yes=1; no=0) Clear sky UV-B downward solar flux Cloud water Cloud water mixing ratio Cloud workfunction Convective available potential energy Convective inhibition Convective precipitation Convective precipitation rate Derived radar reflectivity Dewpoint temperature Downward longwave radiation flux Downward shortwave radiation flux Field capacity Frictional velocity Geopotential height Graupel Ground heat flux Haines index High cloud cover ICAO standard atmosphere reference height Ice cover Ice growth rate Ice temperature Ice thickness Ice water mixing ratio Icing severity Land cover (0=sea, 1=land) Land-sea coverage (nearest neighbor) [land=1, sea=0] Latent heat flux Liquid volumetric soil moisture (non-frozen) Low cloud cover Maximum temperature Maximum/Composite radar reflectivity Medium cloud cover Meridional flux of gravity wave stress Minimum temperature Momentum flux, u-component Momentum flux, v-component MSLP (Eta model reduction) Ozone mixing ratio Percent frozen precipitation Planetary boundary layer height Plant canopy surface water Potential evaporation rate Potential temperature Precipitable water Precipitation rate Pressure Pressure of level from which parcel was lifted Pressure reduced to MSL Rain water mixing ratio Relative humidity Sensible heat flux Snow depth Snow water mixing ratio Soil temperature Soil type Specific humidity Storm relative helicity Sunshine duration Surface lifted index Surface roughness Temperature Total cloud cover Total ozone Total precipitation u-component of storm motion u-component of wind Upward longwave radiation flux Upward shortwave radiation flux UV-B downward solar flux v-component of storm motion v-component of wind Vegetation Ventilation rate Vertical speed shear Vertical velocity (geometric) Vertical velocity (pressure) Visibility Volumetric soil moisture content Water equivalent of accumulated snow depth Water runoff Wilting point Wind speed (gust) Zonal flux of gravity wave stress |
||||||||||||||||||||||||||||||||||||||||
Vertical Levels: | |||||||||||||||||||||||||||||||||||||||||
Data Types: | Grid | ||||||||||||||||||||||||||||||||||||||||
Spatial Coverage: |
Longitude Range: Westernmost=180W Easternmost=180E Latitude Range: Southernmost=90S Northernmost=90N Detailed coverage informationDetailed coverage information: 0.25° x 0.25° from 0E to 359.75E and 90N to 90S (1440 x 721 Longitude/Latitude)
|
||||||||||||||||||||||||||||||||||||||||
Data Contributors: |
DOC/NOAA/NWS/NCEP National Centers for Environmental Prediction, National Weather Service, NOAA, U.S. Department of Commerce
|
||||||||||||||||||||||||||||||||||||||||
Related Resources: | |||||||||||||||||||||||||||||||||||||||||
WRF Preprocessing System (WPS): | The GRIB-formatted data in this dataset can be used to initialize the Weather Research and Forecasting (WRF) Model. WRF Vtables | ||||||||||||||||||||||||||||||||||||||||
How to Cite This Dataset:
RIS BibTeX
|
National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce. 2015, updated daily. NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/D65D8PWK. Accessed† dd mmm yyyy.
Get a customized data citation (must be signed in)†Please fill in the "Accessed" date with the day, month, and year (e.g. - 5 Aug 2011) you last accessed the data from the RDA. Bibliographic citation shown in style |
||||||||||||||||||||||||||||||||||||||||
Total Volume: | 351.79 TB | ||||||||||||||||||||||||||||||||||||||||
Data Formats: | |||||||||||||||||||||||||||||||||||||||||
Related RDA Datasets: |
|
||||||||||||||||||||||||||||||||||||||||
More Details: | View more details for this dataset, including dataset citation, data contributors, and other detailed metadata | ||||||||||||||||||||||||||||||||||||||||
RDA Blog: | Read posts on the RDA blog that are related to this dataset | ||||||||||||||||||||||||||||||||||||||||
Data Access: | Click here or on the "Data Access" tab in the navigation bar near the top of the page | ||||||||||||||||||||||||||||||||||||||||
Metadata Record: | Display in
|
||||||||||||||||||||||||||||||||||||||||
Data License: | This work is licensed under a Creative Commons Attribution 4.0 International License. |